Source code for chamhash_rsa_hw09

'''
**Hohenberger-Waters Chameleon Hash (HW09)**

*Authors:* Susan Hohenberger, Brent Waters

| **Title:** "Realizing Hash-and-Sign Signatures under Standard Assumptions"
| **Published in:** Eurocrypt 2009
| **Available from:** http://eprint.iacr.org/2009/028.pdf
| **Notes:** Appendix A, based on Ateniese-de Medeiros scheme

.. rubric:: Scheme Properties

* **Type:** chameleon hash function
* **Setting:** RSA
* **Assumption:** RSA

.. rubric:: Implementation

:Authors: J. Ayo Akinyele
:Date: 1/2011
'''

from charm.toolbox.Hash import ChamHash,Hash
from charm.toolbox.integergroup import IntegerGroupQ,gcd,integer
from charm.toolbox.conversion import Conversion

debug=False
[docs] class ChamHash_HW09(ChamHash): """ >>> from charm.core.math.integer import integer >>> p = integer(164960892556379843852747960442703555069442262500242170785496141408191025653791149960117681934982863436763270287998062485836533436731979391762052869620652382502450810563192532079839617163226459506619269739544815249458016088505187490329968102214003929285843634017082702266003694786919671197914296386150563930299) >>> q = integer(82480446278189921926373980221351777534721131250121085392748070704095512826895574980058840967491431718381635143999031242918266718365989695881026434810326191251225405281596266039919808581613229753309634869772407624729008044252593745164984051107001964642921817008541351133001847393459835598957148193075281965149) >>> chamHash = ChamHash_HW09() >>> (public_key, secret_key) = chamHash.paramgen(1024, p, q) >>> msg = "Hello world this is the message!" >>> (hash1, r) = chamHash.hash(public_key, msg) >>> (hash2, r) = chamHash.hash(public_key, msg, r) >>> hash1 == hash2 True """ def __init__(self): global group group = IntegerGroupQ(0)
[docs] def paramgen(self, secparam, p = 0, q = 0): # If we're given p, q, compute N = p*q. Otherwise select random p, q if not (p == 0 or q == 0): N = p * q if debug: print("p :=", p) if debug: print("q :=", q) else: group.paramgen(secparam) p, q = group.p, group.q N = p * q phi_N = (p-1)*(q-1) J = group.random(N) # Use deterministic algorithm to find coprime value instead of random search # This fixes Python 3.12+ hanging issue where random values share common factors # Try common RSA public exponents first, then search incrementally common_exponents = [65537, 3, 5, 17, 257, 641, 6700417] e = None for candidate in common_exponents: # Use isCoPrime() method which properly checks gcd == 1 if phi_N.isCoPrime(candidate): e = integer(candidate) break # If common exponents don't work, search incrementally starting from a larger value if e is None: e = integer(65537) max_iterations = 10000000 # Large limit for deterministic search for iterations in range(max_iterations): # Use isCoPrime() method which properly checks gcd == 1 if phi_N.isCoPrime(e): break e += 2 # Only try odd numbers (even numbers can't be coprime with even phi_N) # Check if we found a coprime value (either broke out of loop or on last iteration) if not phi_N.isCoPrime(e): raise RuntimeError( f"Could not find coprime value after {max_iterations} iterations. " f"phi_N={phi_N}, last e={e}, gcd(e, phi_N)={gcd(e, phi_N)}" ) pk = { 'secparam': secparam, 'N': N, 'J': J, 'e': e } sk = { 'p': p, 'q': q } return (pk, sk)
[docs] def hash(self, pk, message, r = 0): N, J, e = pk['N'], pk['J'], pk['e'] if r == 0: r = group.random(N) M = Conversion.bytes2integer(message) h = ((J ** M) * (r ** e)) % N return (h, r)